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Abstract: It has been proposed recently that topological A-model string amplitudes for

toric Calabi-Yau 3-folds in non self-dual graviphoton background can be caluculated by

a diagrammatic method that is called the “refined topological vertex”. We compute the

extended A-model amplitudes for SU(N)-geometries using the proposed vertex. If the

refined topological vertex is valid, these computations should give rise to the Nekrasov’s

partition functions of N = 2 SU(N) gauge theories via the geometric engineering. In this

article, we verify the proposal by confirming the equivalence between the refined A-model

amplitude and the K-theoretic version of the Nekrasov’s partition function by explicit

computation.
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1. Introduction

The study of topological A-model strings on non-compact toric Calabi-Yau manifolds has

been the important subject in the research of topological strings. Topological strings has

provided insights into mathematics and nonperturbative dynamics of gauge and string

theory.

On the one hand, it is in general very hard to caluculate the topological string parti-

tion functions exactly. However in some cases, various dualities enable us to simplify the

caluculation of topological strings greatly and provide new perspectives [1]. For example,

the A-model partition function on the resolved conifold is given by the partition function of

Chern-Simons theory on S3 . This is the geometric transition between the resolved conifold

and the deformed conifold [2 – 4]. By generalizing this argument, an elegant technique for

computing the A-model partition function on toric Calabi-Yau manifolds was formulated

in [5]. The formalism is called the topological vertex.

The mechanism of the geometric engineering is one way to study supersymmetric

gauge theories using string theory and topological string [6]. This approach tells us that
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we can caluculate the F-terms of various N= 2 SU(N) gauge theories by using topological

A-model strings on certain toric Calabi-Yau manifolds. The partition function of the A-

model on the toric Calabi-Yau agrees with the Nekrasov’s partition function of N= 2

SU(N) gauge theory [7 – 13]. Thus topological strings are useful tool to obtain insights

into the nonperturbative dynamics of supersymmetric gauge theories.

The Nekrasov’s partition function in a constant self-dual graviphoton background con-

tains ] one parameter which is corresponding to the value of the background field. The

parameter is nothing but the topological string coupling constant in A-model side. On

the other hand, we can perform the instanton caluclation in the more general background

of non self-dual graviphoton configuration, and we get the K-theoretic version1 of the

Nekrasov’s partition function [7, 14, 15]. Then the Nekrasov’s partition function has one

more parameter in addition to the self-dual graviphoton background. Hence it is natural to

expect that there exists a 2-parameter extension of the topological vertex which will recover

the K-theoretic answer. Few attempts were made for defining the 2-parameter extension of

topological strings and formulating the algorithmical techniques to caluculate the extended

partition function [11, 16, 17]. Recently a refined topological vertex was proposed in [18].

In this article, we compute the refined topological A-model string partition function for

the SU(N) geomerties and check the equivalence of the refined partition function and the

K-theoretic version of the Nekrasov’s partition function.

This paper is organized as follows. In section 2, we review the geometric engineering,

the topological vertex and their 2-parameter extension. The refined A-model partition

function for SU(N) geomerties are calculated and the modification of the framing factor

is proposed in section 3. Conclusions are found in section 4. In appendix A, we give

brief introduction to Young diagrams, Schur functions, and the useful formulae for Schur

functions. In appendix B, a proof of a formula can be found.

2. Topological strings and instanton counting

In this section, we will briefly review the idea of the geometric engineering, topological

A-model strings, and the instanton counting.

2.1 Geometric engineering and A-model

Type IIA string theory compactified on a Calabi-Yau 3-fold yields an effective theory

in transverse 4-dimensions. Especially, enhanced gauge symmetries arise from singular

Calabi-Yau compactification. Thus in the field theory limit, appropriate Calabi-Yau com-

pactifications provide effective gauge theories in 4-dimensions. This is the basic idea of the

geometric engineering [6].

Let us consider Type IIA compactified on a Calabi-Yau 3-fold M . The Kähler param-

eters of M are denoted by ti. Then, the F-term of the effective theory is given by [19, 20]

∞
∑

g=0

∫

d
4 x d

4 θ W
2g

Fg(ti) =

∫

d
4 x



τij F
i
µν F

jµν +

∞
∑

g=1

Fg(ti)R+
2
F+

2g−2



 (2.1)

1These partition functions are called K-theoretic because they are obtained from K-theoretic localization.
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Here, W is Wµν = F+
µν −Rµνρσ θ σρσ θ + · · · , F+ is the self-dual part of the graviphoton

field strength, R+ is the self-dual part of the Riemann tensor, and F i
µν is the U(1) gauge

field strength of the effective theory. Notice that the 4-dimensional U(1) gauge couplings

are given by

τij =
∂2

∂ ti ∂ tj
F0(ti) (2.2)

Hence the genus zero amplitudes of Type IIA strings F0(ti) give rise to the effective gauge

couplings. This is the Seiberg-Witten theory [21] in Type IIA string theory set-up. The

higher genus amplitudes Fg(ti) correspond to the graviphoton corrections to the gauge

theory. They play an important role in the Nekrasov’s partition function that gives a

closed expression for the Seiberg-Witten prepotential [7, 14, 15].

Furthermore, the amplitudes of Type IIA strings Fg(ti) are identical with the topolog-

ical A-model string amplitudes Fg(ti) of M which ”count” the holomorphic maps from

genus g Riemann surfaces to a Calabi-Yau M [19, 20]. The information of the partition

function was encoded in the Gromov-Witten invariants. The generating function of these

amplitudes is called the topological A-model string partition function

Z = exp (F(gs, ti)) = exp





∞
∑

g=0

g2g−2
s Fg(ti)



 (2.3)

Here gs is the topological string couplins constant.

2.2 Gopakumar-Vafa invariants

The target space perspective tells us that we can reformulate A-model as BPS state count-

ing problem. Let us consider M-theory lift of Type IIA on a Calabi-Yau, i.e. M-theory

compactified on a Calabi-Yau times a circle. This set-up gives rise to an effective field

theory in the transverse 5-dimension R
1,3 × S 1. The particles in the effective theory arise

from M2 branes wrapping holomorphic curves of M . The mass and the charge (jL, jR) of

the little group in 5-dimensions SO(4) = SU(2)L × SU(2)R characterise these BPS parti-

cles. The masses are given by m(Σ,n) = TΣ +2πin
gs

. Here TΣ is the Kähler parameter of the

curve class Σ which M2 brane wraps, and n is the momentum along S 1. Therefore the

mass (and cherge via BPS condition) is given by the curve class Σ and the momentum n.

Integrating out these particles, we get the F-term of the effective theory [3]

F =
∑

Σ∈H2(M,Z)

∑

n∈Z

∑

jL,jR

N
(jL,jR)
Σ log det(jL,jR)

(

∆ + m(Σ,n)
2 +2m(Σ,n) σL F+

)

=
∑

Σ∈H2(M,Z)

∞
∑

k=1

∑

jL

N
jL

Σ e−k TΣ
TrjL

(−1)σL e−2k gs σL

k (2 sinh(k gs /2))2

=
∑

Σ∈H2(M,Z)

∞
∑

k=1

∑

jL

N
jL

Σ (−1)−2 jL e−k TΣ

jL
∑

l=− jL

q−2kl

k
(

qk/2 − q−k/2
)2
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Notice that the graviphoton expectation value gives topological string coupling F+ = gs

and we introduce q = e− gs . Changing representation basis of SU(2)L so as to satisfy

∑

jL

N
jL

Σ (
jL
∑

l=− jL

ql) =
∞
∑

g=0
ng

Σ (−1)g (q1/2 − q−1/2)
2g

, we get the following expression of the

A-model partition function

F = log Z =
∑

Σ∈H2(M,Z)

∞
∑

k=1

∞
∑

g=0

ng
Σ

k
(qk/2 − q−k/2)

2g−2
e−TΣ (2.4)

Integer valued invariants ng
Σ which are defined as above are called ”Gopakumar-Vafa in-

variants”.

N
(jL,jR)
Σ is the number of the wrapped M2-branes, and they are not invariant under

the complex structure deformations of Calabi-Yau. Roughly speaking, this is the reason

why the information encoded in the partition function is not the full degeneracies N
(jL,jR)
Σ

but N
jL

Σ which are summed over SU(2)R charges as

N
jL

Σ =
∑

jR

(−1)−2 jR(2 jR +1)N
(jL,jR)
Σ (2.5)

However N
(jL,jR)
Σ themselves are invariants for non-compact Calabi-Yau since these Calabi-

Yau 3-folds have no complex structure deformations [11]. Among them, local toric Calabi-

Yau 3-folds are important ones. Hence we define an extended partition function that counts

invariants N
(jL,jR)
Σ as follows

F =
∑

Σ∈H2(M,Z)

∑

n∈Z

∑

jL,jR

N
(jL,jR)
Σ log det(jL,jR)

(

∆ + m(Σ,n)
2 +2m(Σ,n) σL (F+ + F−)

)

=
∑

Σ∈H2(M,Z)

∞
∑

k=1

∑

jL,jR

N
(jL,jR)
Σ (−1)−2(jL + jR) e−k TΣ

(

jL
∑

l=− jL

(tq)−2kl

)(

jR
∑

m=− jR

(

t
q

)−2km
)

k
(

tk/2 − t−k/2
) (

qk/2 − q−k/2
)

Here q = eF+ and t = eF− .

The question now arises; how to compute these partition functions for non-compact

Calabi-Yau. In the case of toric Calabi-Yau 3-folds, the answer can be found in a dia-

grammatic methods named the topological vertex. Before we turn to the discussion of

topological vertex, it will be useful to take a look at the instanton counting of N= 2 gauge

theory. Hence in the next section, we discuss the Nekrasov’s partition function of N= 2

gauge theory. We will come back to the discussion of the topological vertex later.

2.3 Instanton counting of N = 2 gauge theories

Instanton calculation of N= 2 gauge theories in 4- and 5-dimensions has been developed by

Nekrasov [7]. He found that the instanton coefficients of the Seiberg-Witten prepotential

are summed up to a closed form, and he provided the combinatorical expression of this

generating function. We call it the Nekrasov’s partition function. His conjectual observa-

tion was mathematically verified by Nekrasov-Okounkov [23], Nakajima-Yoshioka [24], and

Braverman [25].
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Take an N= 2 SU(N) supersymmetric pure Yang-Mills theory for example. Muiti-

instanton calculation involves an integral over the ADHM moduli space. It is in general

very hard to carry out the caluculation. However we can formulate the muiti-instanton

calculation of N= 2 SU(N) supersymmetric gauge theory as integrals of equivariant closed

forms. Let us consider the following partition function of N= 2 SU(N) supersymmetric

pure Yang-Mills theory

Z
inst.(~a,Λ) =

∞
∑

k=1

Λ
2Nk

Z
k(~a)

Here ~a ia the Coulomb moduli, Λ is the dynamical scale, and Zk(~a) is a k-instanton

contribution. By deforming the theory by torus action on the moduli space, we can give

the partition function as an integral of equivariant differential

Zk =

∫

M(N,k)

Dµ e−QΨ (2.6)

where M(N, k) is the ADHM moduli space of k-instantons and Q is the BRST operator.

It is known that the BRST operator is an equivariant differential for torus action T =

U(k)×U(1)N−1 ×U(1)2 on the moduli space. Here U(1)2 is the rotation groups of complex

plane R
4 = C

2 and their weights provide deformation parameters ǫi. Then we can apply

the localization formula

Zk =
∑

p0

1
√

detLp0

(2.7)

Here p0 are isolated fixed points of the torus action and Lp0 is the Lie derivative acting

on the tangent moduli space TM(N, k) . It is known that the fixed points of T -action

are uniquely specified by N Young diagrams (µ1, . . . , µN ). Then we have to know the

weights detLp0 of T -action on the tangent moduli space TM(N, k) for the purpose of

multi-instanton caluculus. The weights were caluculated in [26, 7, 14, 15] and the explicit

expression is given by

Z
inst.(ǫ1, ǫ2,~a,Λ) =

∑

~µ

Λ
2N |~µ|

N
∏

a,b=1

∏

s∈µa

1

ab − aa − ǫ1 lµb
(s) + ǫ2(aµa(s) + 1)

×
∏

t∈µb

1

ab − aa + ǫ1(lµa(s) + 1) − ǫ2 aµb
(s)

(2.8)

Nekrasov claimed that the partition function (2.8) leads to the Seiberg-Witten prepotential

after eliminating the deformation parameter ǫ as follows

ǫ1ǫ2 log Z
inst.(ǫ1, ǫ2,~a,Λ) = F inst.

SW (~a,Λ) + O(ǫ1, ǫ2) (2.9)

This conjecture was proved by using the thermodynamical limit of the random parti-

tion [23], the blow-up equation [24], and [25].
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We can lift it to the 5-dimensional gauge theory result

Z
inst.
5D (t, q,~a,Λ, β) =

∑

~µ

(βΛ)2N |~µ|
N
∏

a,b=1

∏

s∈µa

1

1 − Qba tlµb
(s) qaµa (s)+1

(2.10)

∏

t∈µb

1

1 − Qba t− lµa (s)−1 q−aµ
b
(s)

Here β is the radius of the compact fifth dimension S1. Let us choose the deformation

parameter ǫ as ~ = ǫ1 = − ǫ2. In [10, 9, 11] the partition function was reproduced from

the string calculation via the geometric engineering

Z
Nek.SU(N)
5D (~,−~,~a,Λ, β) = ZA−model,SU(N)(~ = gs, ti) (2.11)

and they verified the interpretation in [7] that ~ expansion is nothing but the genus expan-

sion of the string partition function. Notice that the Coulomb moduli ~a and the dynamical

scale Λ are engineered from the Kähler parameters of the Calabi-Yau. We review the

results (2.11) for SU(2) theory later.

Thus it is natural to expect that there is a refinement of string theory to engineer

Nekrasov’ partition function for the general case ǫ1 6= − ǫ2. In this paper we calculate the

K-theoretic partition function (2.10) via the refined topological vertex and show that the

refined A-model of [18] reproduces the correct results.

2.4 Topological vertex and its refinement

It is known that we can compute the topological A-model string amplitudes for toric Calabi-

Yau 3-folds by using the topological vertex [5]. The topological vertex is the Feymnan-rules

like technique which arises from the geometric transition between A-model and Chern-

Simons gauge theory. The Feymnan diagrams, the vertices of diagrams, the momentun,

and the propagators are corresponding to the toric web-diagrams, the tri-valent vertices

Cµ1 µ2 µ3, Young diagrams µ, and the weights (−1)(n+1)|µ| e−T |µ| q−
n κµ

2 , respectively. Here,

T is the Kähler parameter for the 2-cycle corresponding to the line of the web-diagram, µ is

the Young diagram which propagates along the line. The framing number n is determined

by the toric diagram. The vertex is expressed using the Schur functions

Cλµν(q) = qκµ /2 sνt(q−ρ)
∑

η

sλt /η(q
−ν−ρ) sµ/η(q

− νt −ρ) (2.12)

See appendix A for the definition and properties of the Schur functions. The vertices in

figure 1 are glued as

∑

ν

Cλµν(q) (−1)(n+1)|ν| q−nκν /2 e−T |ν|
Cλ′µ′ νt(q) (2.13)

where the framing number n is given by n = v′ ∧ v = v′1 v2 − v1 v′2.

The local Hirzebruch surface F0 = C(P1 × P
1) is a good example to illustlate the topo-

logical vertex calculation. This toric Calabi-Yau 3-fold is the typical SU(2) geometry that

– 6 –
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λ

µ

µ′

λ′

ν
Tv

v′

Figure 1: The toric diagram obtained by gluing the vertices Cλµν and Cλ′µ′νt

φ φ

φφ

µ1

µ2

µ3

µ4

QB

QF QF

QB

Figure 2: The local Hirzebruch surface which is a line bundle over P
1 ×P1

engineers SU(2) pure super Yang-Mills theory. The toric diagram is given by figure 2, and

we can easily check that the framing numbers associated to the four internal lines are all

1. Appling the topological vertex to figure 2, we get the following partition function

ZF0(QF , QB) =
∑

µ1,µ2,µ3,µ4

QF
|µ1|+|µ3| QB

|µ2|+|µ4| q−κµ1
/2+κµ2

/2−κµ3
/2−κµ4

/2

×Cφµ1 µ4
t Cφ µ2

t µ1
t Cµ2 φµ3 Cφµ4 µ3

t

=
∑

µ2,µ4

QB
|µ2|+|µ4| q+κµ2

/2−κµ4
/2

Kµ4 µ2(QF )Kµ2
t µ4

t(QF )

Kµν is defined as follows

Kµν =
∑

λ

QF
|λ| q−κλ /2 Cφλ µt Cνt λt φ

= sµt(q−ρ) sν(q
−ρ)

∑

λ

QF
|λ| sλ

(

q−µ−ρ
)

sλ

(

q− νt −ρ
)

= q‖µ‖2 /2+||νt||2/2 Z̃µt(q) Z̃ν(q)

∞
∏

i,j=1

1

1 − QF
q−µi − νt

j +i+j−1

where we use the relation sµ(q−ρ) = q||µt||2/2
∏

s∈µ
(1 − qhµ(s))

−1
= q||µt||2/2 Z̃µ(q) and for-

mula (A.17). Let us separate out the perturbative contributions as

ZF0 (QB, QF ) = ZF0
pert. (QF ) ZF0

inst. (QB, QF ) (2.14)

ZF0
pert. (QF ) ≡ Kφφ (QF )2 =





∞
∏

i,j=1

1

1 − QF qi+j−1





2

(2.15)

– 7 –
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q t

λ µ

ν

Figure 3: The refined topological vertex Cλµν(t, q)

Then, we get the A-model partition function corresponding to the nonperturbative part of

the Nekrasov’s partition function

ZF0
inst. =

∑

µ,ν

QB
|µ|+|ν| q‖µ‖

2 +||νt||2 Z̃µ(q) Z̃µt(q) Z̃ν(q) Z̃νt(q)





∞
∏

i,j=1

1−QF
q+i+j−1

1−QF q−µi − νt
j +i+j−1





2

(2.16)

In fact, appling the formula (3.20) for the special case we can show that the above result

is identical with the Nekrasov’s partition function of the SU(2) Yang-Mills theory (2.10)

for t = q. The identifications of parameters are given by

QB = (βΛ)4, QF = e2βa (2.17)

Recently, the topological vertex formalism for the refined partition functions has been

proposed in [18] via melting crystal picture of the topological vertex. We call it the refined

topological vertex. It was claimed that the refined topological vertex is constructed so as to

engineer the K-theoretic version of the Nekrasov’s partition function. We verify this claim

in the next section. The proposal of [18] is as follows: the refined vertex corresponding to

figure 3 is given by

Cλµν(t, q) =
(q

t

)
‖µ‖2+‖ν‖2

2
t

κµ
2 Pνt(t−ρ; q, t)

∑

η

(q

t

)
|η|+|λ|−|µ|

2
sλt /η(t

−ρ q−ν) sµ/η(t
− νt

q−ρ)

(2.18)

and we glue the ”t-edge” and the ”q-edge” with weight

fµ(t, q) = (−1)|µ| tn(µ) q−n(µt) (2.19)

The specialization of Macdonald function Pνt(t−ρ; q, t), ||µ||2, and n(µ) are defined in ap-

pendix A.

The purpose of this article is to confirm that the refined vertex for SU(N) geometry

engineers the K-theoretic version of the Nekrasov’s partition function. The refined partition

functions for the SU(2) and SU(3) geometries and their blow-up were computed in [18].

Hence in the next section, we generalize their discussion to the general SU(N) geometries

and their blow-up. As the result, we propose that we shoud modifiy the framing factors in

order to engineer the Nekrasov’s results.

– 8 –
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µa

µ1

(a) (b)

(−a + m + 2, 1)

(m + 1, 1)
(m, 1)

(−a − 1 + N,−1)

(−N + m + 1, 1)µN

QB1

QBa

QBN

QF1

QFN−1

µ1
µ2

µN

QF1

QF2

QFN

Figure 4: (a)The toric diagram of SU(N) geometry (b)The building block of SU(N) geometry,

and refined vertex on this geometry implies Kµ
1···

µ
N

(

QF,1, . . . , QF,N−1

)

3. Refined A-model amplitudes and Nekrasov’s partition functions

In this section, we compute the refined partition function for SU(N) geometry via refined

topological vertex. The important point of the result in this section is that these refined

partition functions are the same as the K-theoretic version of the Nekrasov’s partition

functions under the little modification of the framing factor. This result verifies the proposal

of the refined topological vertex.

3.1 N = 2 SU(N) super Yang-Mills

3.1.1 A-model partition function

The toric diagram of SU(N) geometry which give rise to the N= 2 SU(N) super Yang-Mills

are shown in figure 4(a). The parallel edges corresponding to the base P
1 are the preferred

directions of [18]. For fixed N , there are N + 1 inequivalent geometries (m = 0 · · ·N)

which give SU(N) super Yang-Mills. The number m is the Chern-Simons coefficient of the

5-dimensiomal theory in the gauge theory side.

Let us start with the computation of the subdiagram figure 4(b). For the reason which

we discuss later, we modify slightly the framing factor proposed in [18] as follows

fµ(t, q) = (−1)|µ| t
||µt||2

2 q−
‖µ‖2

2 = (−1)|µ|
(

t

q

)
||µt||

2

2

q−
κµ
2 (3.1)

Using the refined vertex, we can express the subdiagram as

Kµ1···µN

(

QF,1, . . . , QF,N−1

)

=
∑

λ1···λN−1

N
∏

a=1

(

−QF,a

)||λa|| fλa
(t, q)Cλt

a−1 λa µa
(t, q)

=
∑

λ1···λN−1

N
∏

a=1

∑

η1··· ηN

Q
|λa|
F,a

(

t

q

)

||λ
t
a||2

2

q−
κλa

2

(q

t

)
‖λa‖2+‖µa‖2

2

× t
κλa

2 Pµt
a

(

t−ρ; q, t
)

(q

t

)

|ηa|+|λa−1|−|λa|

2

× sλa−1 / ηa

(

t−ρ q−µa
)

sλa / ηa

(

t−
µa

t
q−ρ
)

(3.2)
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Notice ‖µ‖2 −
∥

∥µt
∥

∥

2
= κµ and λ0 = λN = φ. Simplifing the summation, we get

Kµ1···µN

(

QF,1, . . . , QF,N−1

)

=
N
∏

a=1

[

q
‖µa‖2

2 Z̃µa(t, q)

]

×
∑

λ1···λN−1

∑

η1··· ηN

N
∏

a=1

Q
|λa|
F,a

(q

t

)
|ηa|
2

sλa−1 / ηa

(

t−ρ q−µa
)

sλa / ηa

(

t−
µa

t
q−ρ
)

The sum involved in the above subdiagram becomes

∑

λ1···λN−1

∑

η1··· ηN

N
∏

a=1

(
√

q

t
QF,a

)|λa|

sλa−1 / ηa

(

t−ρ q−µa − 1
2

)

sλa / ηa

(

t−
µa

t + 1
2 q−ρ

)

=
∑

λ1···λN−1

∑

ρ1···ρN−1

N−1
∏

a=1

(
√

q

t
QF,a

)|λa|

sλa / ρa−1

(

t−
µa

t + 1
2 q−ρ

)

sλa / ρa

(

t−ρ q−µa+1 −
1
2

)

Notice taht ρ0 = ρN−1 = φ. We can take the summation over Young diagrams by Lemma

3.1 of [12], or using the vertex on a strip [27] as we will disscuss in the next subsection.

Then we get

Kµ1···µN

(

QF,a

)

=
N
∏

a=1

[

q
‖µa‖2

2 Z̃µa(t, q)

]

×
∏

1≤a<b≤N

∞
∏

i,j=1

1

1 − Qab t−µt
ai +j q−µbj +i−1

(3.3)

where Qab ≡
b−1
∏

l=a

(√

q
t QF,l

)

≡
b−1
∏

l=a

Q̃F,l.

Let us glue these subdiagrams. The framing factors are given by na = (a − m − 2,−1)∧

(a − N + 1, 1) = −(N + m − 2a + 1) as figure 4. Then, the A-model amplitude is

Z
A−model,SU(N)

(

QB , QF,a

)

=
∑

µ1···µN

N
∏

a=1

[

Q
|µa|
B,a fµa

(t, q)na

]

Kµ1···µN

(

QF,a, t, q
)

Kµt
N ···µt

1

(

QF,a, q, t
)

= Z
A−model,SU(N)
pert.

(

QF,a

)

Z
A−model,SU(N)
inst

(

QB, QF,a

)

(3.4)

The perturbative part of the partition function is given by [7]

Z
A−model,SU(N)
pert.

(

QF,a

)

≡ Kφ···φ

(

QF,a

)2

By substituting (3.3) into (3.4), we obtain

Z
A−model,SU(N)
inst.

(

QB , QF,a

)

=
∑

µ1···µN

N
∏

a=1

[

Q
|µa|
B,a fµa

(t, q)na q
‖µa‖2

2 t
||µt

a||2

2 Z̃µa(t, q) Z̃µt
a
(q, t)

]

×
∏

1≤a<b≤N

∞
∏

i,j=1

1 − Qab tj qi−1

1 − Qab t−
µt

ai +j q−µbj +i−1

1 − Qab tj−1 qi

1 − Qab t−
µt

ai +j−1 q−µbj +i

(3.5)

As we show in the next subsection, the partition function is identical with that of Nekrasov.

– 10 –



J
H
E
P
0
3
(
2
0
0
8
)
0
4
8

3.1.2 Identification with Nekrasov’s partition functions

In this subsection, we show that the refined A-model amplitude agrees with the K-theoretic

version of the Nekrasov’s partition function:

Z
A−model,SU(N)
inst.

(

QB , QF,a

)

= Z
Nek,SU(N)
inst.

(

Q̂,Qab

)

(3.6)

Recall that the K-theoretic version of the Nekrasov’s partition functions with a Chern-

Simons term is given by [28, 29]

Z
Nek. SU(N),m
inst. (Q̂,Qab) =

∑

⇀
µ

Q̂
|~µ|

∏

a,b
N

~µ
ab(t, q,Qab)

(q

t

)
N
2
|~µ|

N
∏

a=1

em|µa|
a t−m

||µt
a||2

2 qm ‖µa‖2

2 (3.7)

Note that Qab = ea e−1
b .

First, let us rewrite the character part
∏

N
~µ
ab. The identity

∞
∑

i,j=1

qµi −j+1 tνj −i =

∞
∑

i,j=1

q− νt
j +i

t−
µt

i +j−1 (3.8)

follows from (t − 1)
∞
∑

i=1

qµi t−i =
(

q−1 −1
)

∞
∑

i=1
t−

µt
i qi for t, q 6= 1 [16]. It is easy to prove the

following formula using (3.8) (take the logarithm of the equation(3.9))

∞
∏

i,j=1

(

1 − Qt
−µt

j +i q− νi +j−1
)

=
∞
∏

i,j=1

(

1 − Qqµi −j t
νt

j −i+1
)

(3.9)

The character part of the Nekrasov’s patririon function is given by

1

N
~µ
12 (t, q,Q)

≡
∏

(i,j)∈µ

1

1 − Qt
νt

j −i qµi −j+1

∏

(i,j)∈ν

1

1 − Qt
−µt

j +i−1 q− νi +j

=
∞
∏

i,j=1

1 − Qtj−1 qi

1 − Qt
−µt

j +i−1 q− νi +j
(3.10)

where µ1 = µ, µ2 = ν,Q12 = Q. By using (3.9), we have

∞
∏

i,j=1

1 − Qtj qi−1

1 − Qt
−µt

j +i q− νi +j−1
=

∞
∏

i,j=1

1 − Qtj qi−1

1 − Qqµi −j t
νt

j −i+1

=
∏

(i,j)∈ν

1

1 − Qt
−µt

j +i q− νi +j−1

∏

(i,j)∈µ

1

1 − Qt
νt

j −i+1 qµi −j

= (−Q)−|µ|−|ν|
t

P

(i,j)∈ν

(µt
j −i)−

P

(i,j)∈µ

(νt
j −i+1)

q

P

(i,j)∈ν

(νi −j+1)−
P

(i,j)∈µ

(µi −j)

×
1

N
~µ
21 (t, q,Q−1)

(3.11)
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The factors appear in the above equation become

∑

(i,j)∈ν

µt
j =

ν1
∑

j=1

νt
j
∑

i=1

µt
j =

min(µ1,ν1)
∑

j=1

µt
j νt

j =
∑

(i,j)∈µ

νt
j

∑

(i,j)∈µ

(µi −j) =

d(µ)
∑

i=1

[(µi −1) + · · · + (µi −µi)] =
‖µ‖2

2
−

|µ|

2

Hence we obtain

1

N
~µ
12 (t, q,Q) N

~µ
21 (t, q,Q−1)

= (−Q)|µ|+|ν|
(q

t

)−
|µ|
2
−

|ν|
2

+
||µt||2

2
−

||νt||2

2 q
κµ
2
−κν

2 (3.12)

×
∞
∏

i,j=1

1 − Q12 ti−1 qj

1 − Q12 t
−µt

j +i−1 q− νi +j

1 − Q12 ti qj−1

1 − Q12 t
−µt

j +i q− νi +j−1

It is easy to show

1

N
~µ
aa (t, q,Qaa = 1)

= (−1)|µa|

(

t

q

)
|µa|

2

t
||µt

a||2

2 q
‖µa‖2

2 Z̃µa (t, q) Z̃µt
a
(q, t) (3.13)

By combining above identities, we can rewrite the Nekrasov’s partition function as follows

∑

⇀
µ

Q̂
|~µ|

∏

a<b
N

~µ
ab(t, q,Qab)

(q

t

)N
2
|~µ|

N
∏

a=1

em|µa|
a t−m

||µt
a||2

2 qm
‖µa‖2

2

=
∑

~µ

(−1)N |~µ|Q̂
|~µ|∏

a<b

[

Q
|µa|+|µb|
ab

]

N
∏

a=1

[em|µa|
a

(q

t

)(N+m−2a+1)
||µt

a||2

2 q(N+m−2a+1)
κµa

2

× t
||µt

a||2

2 q
‖µa‖2

2 Z̃µa(t, q) Z̃µt
a
(q, t)]

×
∏

a<b

∞
∏

i,j=1

1 − Qab ti−1 qj

1 − Qab t
−µt

aj +i−1 q−µbi +j

1 − Qab ti qj−1

1 − Qab t
−µt

aj +i q−µbi +j−1
(3.14)

Next, let us rewrite the remainder Q̂
|~µ| ∏

a<b

Q
|µa|+|µb|
ab

N
∏

a=1
em|µa|
a . We shall rewrite it in

terms of the Kähler parameters of the base and the fiber P
1’s by showing the following

identity

C QB
|~µ|
∏

a<b

Q
|µa|+|µb|
ab

N
∏

a=1

em|µa|
a =

N
∏

a=1

Q
|µa|
B,a (3.15)

We prove this identity in the case of N =odd and m =even for example. It is easy to

generarize this proof. First we use the results of [9], that is, QB,a are given by the base

and the fiber Kähler parameters and they satisfy

N
∏

i=1

Q
|µa|
B,a = QB

|~µ|

[N+m−1
2 ]
∏

a=1

Q̃
(N+m−2a)(|µ1|+···+|µa|)
F,a

N−1
∏

a=[N+m
2

+1]

Q̃
−(N+m−2a)(|µa+1|+···+|µN |)
F,a

(3.16)
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Here we modify QF,a to Q̃F,a in the case of the refined partition function.

On the one hand we can obtain the following identity after some algebra

∏

a<b

Q
|µa|+|µb|
ab =







N−1
2
∏

a=1

Q̃
a
F,a

N−1
∏

a= N+1
2

Q̃
N−a
F,a







|~µ|
N−1

2
∏

a=1





N−1
2
∏

b=a

Q̃
(N−2b)
F,b





|µa|

N−1
∏

a= N+1
2

+1







a−1
∏

b= N+1
2

Q̃
(2b−N)
F,b







|µa|

=







N−1
2
∏

a=1

Q̃
a
F,a

N−1
∏

a= N+1
2

Q̃
N−a
F,a







˛

˛

˛

⇀
µ

˛

˛

˛

N−1
2
∏

a=1

Q̃
(N−2a)(|µ1|+···+|µa|)
F,a

N−1
∏

a= N+1
2

Q̃
(2a−N)(|µa+1|+···+|µN |)
F,a (3.17)

Here we use Qab =
b−1
∏

l=a

Q̃F,l. Using Q̃F,a = ea ea+1
−1, we can also show

N−1
2
∏

a=1

Q̃
m(|µ1|+···+|µa|)
F,a

N−1
∏

a= N+1
2

Q̃
−m(|µa+1|+···+|µN |)
F,a

×

N+m−1
2
∏

a= N+1
2

Q̃
(N+m−2a)(|µ1|+···+|µa|)
F,a

N+m−1
2
∏

a= N+1
2

Q̃
(−2a+N+m)(|µa+1|+···+|µN |)
F,a

=







N−1
2
∏

a=1

N−1
2
∏

b=a

Q̃
|µa|
F,b

N−1
∏

a= N+1
2

+1

a−1
∏

b= N+1
2

Q̃
−|µa|
F,b







m





N+m−1
2
∏

a= N+1
2

Q̃
(N+m−2a)
F,a







(|µ1|+···+|µN |)

=







(

eN+1
2

)−m
N+m−1

2
∏

a= N+1
2

Q̃
(N+m−2a)
F,a







|~µ|
N−1
∏

a=1

em|µa|
a (3.18)

C =

N+m−1
2
∏

a= N+1
2

QN+m−2a
F,a

(eN+1
2

)m
N−1

2
∏

a=1
Qa

F,a

N−1
∏

a= N+1
2

QN−a
F,a

(3.19)

Finally, (3.14) (3.15) imply the following equality

Z
A−model,SU(N)
inst.

(

QB , QF,a

)

= Z
Nek,SU(N)
inst.

(

Q̂,Qab

)

(3.20)

where Q̂ = (−1)NC(ea, t, q,m)QB .
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(−1,−1) curve
(−2, 0) curve(−1,−1) curve

(−1,−1) curve

Figure 5: A toric diagram of a strip geometry which is obtained from triangulation of a strip toric

data

3.2 Modification of the framing factor

Recall that we adopt the modified framing factor

fµ(t, q) = (−1)|µ| t
||µt||2

2 q−
‖µ‖2

2 (3.21)

in the calculation of this section. If we use the framing factor without our modification,

we get the additional factor

N
∏

a=1

(

t

q

)−
na|µa|

2

(3.22)

in the summation of the refined patririon function. They cannot be absorbed into the Q̂ and

break the equivalence (3.20). Hence we need the modification of the framing factor (3.1).

na are small integers for the SU(2) and SU(3) geometries, so the partition functions

are insensitive to the factor (3.22) in [18]. On the one hand, the mismatch (3.22) is obvious

for SU(N) geometry with general Chern-Simon term m.

3.3 Adding matters and strip geometries

By blowing up the SU(N) geometries, we can add matters to the Nekrasov’s instanton

calculation via the geometric engineering. The Kähler parameters of the blown up P
1’s give

rise to the mass parameters of the matters. These geometries is obtained by gluing strip

geometries. A strip geometry is a toric Calabi-Yau that contains a chain of P
1’s. Each P

1

locally forms a (−1,−1) curve O(−1)⊕O(−1) → P
1 or (−2, 0) curve O(−2)⊕O(0) → P

1 as

figure 5. Following [27], we take the chain of (−1,−1) curves figure 6 for example. Gluing

these strip geometries, we get the toric Calabi-Yau that engineers N= 2 SU(N) gauge

theory with Nf = 2N [27]. The refined vertex on the strip geometry figure 6(a) yields

K
α1 α2···
β1 β2···

=
∑

{µa},{νa}

(

−QM,1

)|µ1| (−QF,2

)|ν2| (−QM,2

)|µ2| · · · (3.23)

× Cνt
1

µ1 α1 Cν2 µt
1 β1

Cνt
2

µ2 α2 Cν3 µt
2 β2

× · · ·
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α2

(a) (b)

α1

α3

β1

β2

β3

ν1 = φ

ν2

µ1

µ2

α1
t

β1
t

α2
t

β2
t

Figure 6: The building blocks of the toric Calabi-Yau that engineers SU(N) gauge theory with

Nf = 2N

=
∏

a

[

q
‖αa‖2

2 t
‖βa‖2

2 Z̃αa(t, q) Z̃βa
(q, t)

]

×
∑

{µa},{νa}
{ρa},{σa}

∏

a

(

−QM,a

)|µa| (−QF,a

)|νa|
(q

t

)
‖µa‖2

2
t

κµa
2

(

t

q

)

||µt
a||2

2

q−
κµa

2

×
(q

t

)
|ρa|+|νa|−|µa|

2

(

t

q

)

|σa|+|νa+1|−|µa|

2

×sνa / ρa

(

t−ρ q−αa
)

sµa / ρa

(

t−αt
a q−ρ

)

sνt
a+1 / σa

(

q−ρ t− βa

)

sµt
a / σa

(

q−βt
a t−ρ

)

where ν1 = νN+1 = φ. They involve the following sum

∑

{µa},{νa}
{ρa},{σa}

∏

a

(

−QM,a

)|µa| (−QF,a

)|νa|

× sνa / ρa

(

t−ρ+ 1
2 q−αa

)

sµa / ρa

(

t−αt
a q−ρ− 1

2

)

sνt
a+1 / σa

(

q−ρ t− βa − 1
2

)

sµt
a / σa

(

q− βt
a + 1

2 t−ρ
)

Using the method of Iqbal-KashaniPoor [27], we can take the summation. The only differ-

ence from the result of [27] is the arguments of Schur functions. Bewaring the difference,

we get the sum as follows
∏

1≤a≤b≤N

[

t−αt
a q−ρ− 1

2 ,−Qαa βb
q− βt

b + 1
2 t−ρ

]

∏

1≤a<b≤N

[

q−ρ t− βa − 1
2 ,−Qβa αb

t−ρ+ 1
2 q−αb

]

×
∏

1≤a<b≤N

{

t−αt
a q−ρ− 1

2 , Qαa αb
t−ρ+ 1

2 q−αb

}{

q−ρ t− βa − 1
2 , Qβa βb

t−ρ q− βt
b + 1

2

}

(3.24)

We provide the direct proof in appendix B. Here Kähler parameters are given by

Qαa βb
= QM,a QF,a+1 · · ·QM,b−1 QF,b QM,b = Qa,b QM,b

Qβa αb
= QF,a+1 · · ·QM,b−1 QF,b = Q−1

M,a Qa,b

Qαa αb
= QM,a QF,a+1 · · ·QM,b−1 QF,b = Qa,b

Qβa βb
= QF,a+1 · · ·QM,b−1 QF,b QM,b = Q−1

M,a Qa,b QM,b
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and we introduce

[x, y] ≡
∞
∏

i,j=1

(1 + xi yj), {x, y} ≡
∞
∏

i,j=1

(1 − xi yj)
−1 (3.25)

Then we obtain the following expression

K
α1 α2···
β1 β2···

=
∏

a

[

q
‖αa‖2

2 t
‖βa‖2

2 Z̃αa(t, q) Z̃βa
(q, t)

]

(3.26)

×
∞
∏

i,j=1

∏

1≤a≤b≤N

(

1 − Qαa βb
t
−αt

a,i +j− 1
2 q− βt

b,j +i− 1
2

)

∏

1≤a<b≤N

(

1 − Qβa αb
t−βa,i +j− 1

2 q−αb,j +i− 1
2

)

×
∏

1≤a<b≤N

(

1−Qαa αb
t
−αt

a,i +j q−αb,j +i−1
)−1(

1−Qβa βb
t− βa,i +j−1 q− βt

b,j +i
)−1

The amplitude for the pair of this strip geomerty figure 6(b) is given by

K̃
βt
1 βt

2···

αt
1 αt

2···
=
∏

a

[

t
||αt

a||2

2 q
||βt

a||2

2 Z̃αt
a
(q, t) Z̃βt

a
(t, q)

]

(3.27)

×
∞
∏

i,j=1

∏

1≤a≤b≤N

(

1 − Q′
αa βb

t
−αt

a,i +j− 1
2 q−βt

b,j +i− 1
2

)

∏

1≤a<b≤N

(

1 − Q′
βa αb

t− βa,i +j− 1
2 q−αb,j +i− 1

2

)

×
∏

1≤a<b≤N

(

1−Q′
αa αb

t
−αt

a,i +j−1 q−αb,j +i
)−1(

1−Q′
βa βb

t− βa,i +j q−βt
b,j +i−1

)−1

Gluing them, we get the Nekrasov’s partition functioin for N= 2 SU(N) gauge theory with

Nf = 2N

Z =
∑

α1 α2···

N
∏

a=1

(

fαa
(t, q)QB

|αa|
)

K
α1 α2···
φφ······ (Qab, QM,a) K̃

φφ···
αt

1 αt
2···

(Qab, Q
′
M,a)

It is not so hard to generarize the above caluculation of the refined vertex for another strip

geometries which contain (−1,−1) curves and (−2, 0) curves. Then we can engineer the

Nekrasov’s partition functioins for various N= 2 SU(N) quiver gauge theories with matters

by gluing these amplituses.

4. Conclusion

In this paper, we have applied refined topological vertex for SU(N) geometries and re-

produced the K-theoretic version of the Nekrasov’s partition functions. From this results

– 16 –
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we can adopt refined topological vertex as a 2-parameter extension of topological A-model

under the modification of the framing factor. As we discussed in this paper, the necessity

of the modification become clear in the case of SU(N) geometry. We have also discussed

a refined vertex on a strip geometry. Many of the nice properties obtained in [27] are

maintained in the case of refined vertex. The important point is that refined vertex on

strip reduces to a summation of Schur functions which is essentially discussed in [27].

Hence Schur functions of the partition functions can be summed up as in the case of the

topological vertex on strips.
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A. Young diagrams and Schur functions

Young diagrams. The Young diagrams is defined as a sequence of decreasing non-

negative integers

µ = {µi ∈ Z≥0 |µ1 ≥ µ2 ≥ · · ·} (A.1)

The transpose of µ is defined as follows

µt =
{

µt
j ∈ Z≥0 |µ

t
j = # {i|µi ≥ j}

}

(A.2)

The size and the norm of the partition is denoted as

|µ| =

d(µ)
∑

i=1

µi, ‖µ‖2 =

d(µ)
∑

i=1

µ2
i (A.3)

For (i, j) ∈ µ, we define the following quantities,

aµ(i, j) = µi −j, lµ(i, j) = µt
j −i

a′µ(i, j) = j − 1, l′µ(i, j) = i − 1

We introduce the hook length of the Young diagram

hµ(i, j) = µi −j + µt
j −i + 1

It is also useful to define the following quantities

n(µ) =
d(µ)
∑

i=1
(i − 1)µi κµ =

∑

(i,j)∈µ

(j − i)

It is easy to show that they satisfy the following identities

n(µ) =
1

2

µ1
∑

j=1

µt
j(µ

t
j −1) =

∑

s∈µ

l′µ(s) =
∑

s∈µ

lµ(s) (A.4)
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n(µt) =
1

2

d(µ)
∑

i=1

µi(µi −1) =
∑

s∈µ

a′µ(s) =
∑

s∈µ

aµ(s) (A.5)

κµ = 2(n(µt) − n(µ)) = ‖µ‖2 −
∥

∥µt
∥

∥

2
(A.6)

∑

s∈µ

hµ(s) = n(µ) + n(µt) + |µ| (A.7)

Schur functions. The Schur functions for N variables (x1, . . . , xN ) are defined by the

determinant formula

sµ(x1, . . . , xN ) =
deti,j=1,...N

(

xi
µj +N−j

)

deti,j=1,...N (xi
N−j)

(A.8)

From the definition, the Schur functions are symmetric under the permutation of the vari-

ables. Moreover it is known that they form an orthogonal basis of the symmetric polyno-

mials. We can also define the skew Schur functions by

sµ/ν(x) =
∑

ρ

cµ
νρ sρ(x) (A.9)

Here we introduce the Richardson-Littlewood coefficients cρ
µν

sµ(x) sν(x) =
∑

ρ

cρ
µν sρ(x) (A.10)

We have the product expression for the Schur function of the variables {qρ} =

{q−i+ 1
2}i=1,2,... [30]

sµ(q−ρ) ≡ sµ(q
1
2 , q

3
2 , . . .) = q

‖µt‖
2

2 Z̃µ(q) (A.11)

where

Z̃µ(q) =
∏

s∈µ

(

1 − qhµ(s)
)−1

(A.12)

Using this formula, we obtain

sµ(qρ) = q
κµ
2 sµt(qρ) = (−1)|µ| sµt(q−ρ) (A.13)

Let us introduce the 2-parameter extension of Z̃µ(q) by

Pµ(t−ρ; q, t) = t
‖µt‖

2

2 Z̃µt(t, q) (A.14)

Z̃µ(t, q) =
∏

s∈µ

(

1 − taµ(s)+1 qlµ(s)
)−1

(A.15)

It appears in the refinement of topological vertex:

Cφφµ(q) = q
‖µ‖2

2 Z̃µ(q) → Cφφµ(t, q) = q
‖µ‖2

2 Z̃µ(t, q) (A.16)
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In summing the Schur functions, we use the following identities
∑

µ

sµ(x) sµ(y) =
∏

i,j

(1 − xi yj)
−1 (A.17)

∑

µ

sµt(x) sµ(y) =
∏

i,j

(1 + xi yj) (A.18)

∑

µ

sµ/ρ(x) sµ/σ(y) =
∏

i,j

(1 − xi yj)
−1
∑

ν

sρ/ν(y) sσ/ν(x) (A.19)

∑

µ

sµt/ρ(x) sµ/σ(y) =
∏

i,j

(1 + xi yj)
∑

ν

sρ/νt(y) sσt/νt(x) (A.20)

sµ(Qx) = Q|µ| sµ(x) (A.21)

sµ/ν(Qx) = Q|µ|−|ν| sµ/ν(x) (A.22)

They are important identities which we use throughout the paper.

B. Proof of formula

In this appendix, we prove the following identity for section 3.

N
∏

a=1

QM,a
|µa|

N
∏

a=2

QF,a
|νa|

∑

{µi}, {νi}
{ρi}, {σi}

N
∏

a=1

sνa / ρa

(

w(a)
)

sµa / ρa

(

x(a)
)

sµa
t / σa+1

(

y(a)
)

sνa+1
t / σa+1

(

z(a+1)
)

=
∏

1≤a≤b≤N

[

x(a), Qαa βb
y(b)
]

∏

1≤a<b≤N

[

z(a+1), Qβa αb
w(b)

]

{

x(a), Qαa αb
w(b)

}{

z(a+1), Qβa βb
y(b)
}

(B.1)

where we take the sum over the Young diagrams µ1 · · ·µN , ν2 · · · νN , ρ2 · · · ρN , and

σ2 · · · σN . Notice that we denote ρ1 = σN+1 = φ. in the formula.

Let us show the identity. The first line of this equation becomes

∑

ρ2··· ρN
σ2··· σN

N
∏

a=2

QM,a
|ρa| QF,a

|σa|

×
∑

µ1··· µ
N

ν2··· νN

N
∏

a=1

sµa / ρa

(

QM,a x(a)
)

sµa
t / σa+1

(

y(a)
)

sνa+1
t / σa+1

(

QF,a+1 z(a+1)
)

sνa+1 / ρa+1

(

w(a+1)
)

=

N
∏

a=1

[

x(a), QM,a y(a)
]

N
∏

a=2

[

z(a+1), QF,a+1 w(a+1)
]

∑

α2··· αN−1
β2··· βN

∑

ρ2··· ρ
N

σ2···σN

N
∏

a=2

QM,a
|αa| QF,a

|βa|

×
N
∏

a=1

sσa+1
t / αa

(

QM,a x(a)
)

sρa
t / αa

(

QM,a y(a)
)

sρa+1
t / βa+1

t
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(

QF,a+1 z(a+1)
)

sσa+1
t / βa+1

(

QF,a+1 w(a+1)
)

=

N
∏

a=1

[

x(a), QM,a y(a)
]

N−1
∏

a=2

[

z(a), QF,a w(a)
]

N
∏

a=1

{

x(a), QM,a QF,a+1 w(a+1)
}

{

z(a+1), QF,a+1 QM,a+1
y(a+1)

}

×
∑

β1···βN−1
α2···αN−1

∑

γ2··· γ
N−1

δ2··· δN−1

N−1
∏

a=1

QF,a+1
|βa|

N−1
∏

a=2

QM,a
|αa|

×
N−1
∏

a=1

sαa / γa

(

QF,a+1 w(a+1)
)

sβa / γa

(

QM,a x(a)
)

sβa
t / δa+1

(

QM,a+1 y(a+1)
)

sαa+1
t / δa+1

(

QF,a+1 z(a+1)
)

Using this result repeatingly, we obtain the second line of the formula (B.1).
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